Partitioning the non-additive variation of complex traits

Center for Computational Molecular Biology Brown University

Julian Stamp

Outline

Introduction

Marginal **Epistasis**

Multivariate **Linear Mixed** Models

i-LDSC regression

Conclusion

Phenotypic Variance Genetic & Environmental Factors

P = G + E

Broad sense Heritability $H^{2} = \frac{\text{Var}[G]}{\text{Var}[P]}$

Non-additive variation in human traits

Relative importance of epistasis is controversial¹

- Epistatic gene action is different from statistical epistasis
- Statistical epistatic trait variance depends on allele frequencies²
- Estimated "additive" effects are function of non-additive effects²
- Majority of the heritability of complex traits "missing"³

1 Hill et al. (2008), *PLOS Gen* 2 Hivert et al. (2021), PLOS Gen 3 Young (2019), PLOS Gen

Hill, Goddard, and Visscher (2008). Distribution $r_{MZ} - 2r_{DZ}$ for all traits on human twins.

 r_{DZ} - trait correlation dizygous twins

 $r_{MZ} - 2r_{DZ} > 0$ implies **nonlinear** contributions

Additive

Explicit search space

Epistasis as combinatorial problem

- There are p(p-1)/2 possible interacting pairs for p SNPs
- Idea: Prioritize search for variant interactions using <u>marginal</u> <u>epistatic effects</u>

Pairwise Interaction Effects

Marginal Effects

SNP k		+		+		=	
•							
SNP 3				Symmetric	axis x = y		
SNP 2							
SNP 1							
	SNP 1	SNP 2	SNP 3	• • •			Significa Thresho
5		-	0	+			

Approach Starting point: The Marginal Epistasis Test (MAPIT)

Crawford et al. (2017), PLOS Gen

Approach

Normal assumption for effect size trick for underdetermined data

- Genetic Relatedness Matrix $\mathbf{K} = \mathbf{X}_{-k} \mathbf{X}_{-k}^T$
- Covariance of the interaction of SNP k with it's background
 G = D_kKD_k with
 D_k = diag(x_k)
- Estimate variance parameters jointly using MQS

$\mathbf{y} = \boldsymbol{\mu} + \beta_k \mathbf{x}_k + \mathbf{m}_k + \mathbf{g}_k + \boldsymbol{\varepsilon}$

$\mathbf{m}_{k} \sim \mathbf{MVN} \left(\mathbf{0}, \boldsymbol{\omega}^{2} \mathbf{K} \right)$ $\mathbf{g}_{k} \sim \mathbf{MVN} \left(\mathbf{0}, \boldsymbol{\sigma}^{2} \mathbf{G} \right)$ $\boldsymbol{\varepsilon} \sim \mathbf{MVN} \left(\mathbf{0}, \boldsymbol{\tau}^{2} \mathbf{I} \right)$

Crawford et al. (2017), PLOS Gen

MAPIT **Null Hypothesis and Test**

 We want to test for marginal epistatic effects

- Use MQS¹ to estimate variance components
- Under the null hypothesis assume mixture of chisquared²

$H_0: \mathbf{g}_k = 0 \quad \Leftrightarrow \quad H_0: \sigma^2 = 0$

$$\widehat{\boldsymbol{\sigma}}^2 = \mathbf{y}^T \mathbf{A}_k \mathbf{y}$$

$$\sigma^2 \sim \sum_{i=1}^n \lambda_i \chi_{1,i}^2$$

1 Zhou (2017), AOAS 2 Crawford et al. (2017), PLOS Gen

MAPIT Simulations of complex traits

Scenarios

- Null Hypothesis true: no epistasis
- Epistasis with varying parameters

Parameters SNPs

- Broad sense heritability H^2
- Proportion of heritable variance due to epistasis $H^2(1-\rho)$

Group 1

MAPIT **Simulations of complex traits**

Marginal epistasis e.g. $\mathbf{e}_{\mathbf{x}_1} = (\mathbf{x}_1 \circ \mathbf{x}_3) \cdot \alpha_{13} + (\mathbf{x}_1 \circ \mathbf{x}_4) \cdot \alpha_{14} + (\mathbf{x}_1 \circ \mathbf{x}_5) \cdot \alpha_{15}$ $\mathbf{\bullet} \mathbf{g}_{x_3} = (\mathbf{x}_1 \mathbf{\bullet} \mathbf{x}_3) \cdot \alpha_{13} + (\mathbf{x}_2 \mathbf{\bullet} \mathbf{x}_3) \cdot \alpha_{23}$

Simulations **Estimating PVE**

- 10 Causal SNPs in Group 1
- Scenario I: 10 SNPs in Group 2
- Scenario II: 20 SNPs in Group 2
- Scenario III: 50 SNPs in Group 2
- Scenario IV: 100 SNPs in Group 2

i-LDSC

Conclusion

MAPIT

Red Line: Genome-wide significance threshold

Crawford et al. (2017), PLOS Gen

Multivariate LMM

- Genetic correlations between traits maintained by pleiotropy¹
- Multivariate modelling improves GWAS²
- \Rightarrow Can we leverage **genetic correlations** to improve detection of epistasis?

1 Chebib and Guillaume (2021), *Genetics* 2 Zhou and Stephens (2014), *Nature*

Approach Multivariate extension of MAPIT (mvMAPIT)

- One trait $\mathbf{y} = (y_1, ..., y_n)^{\top}$
- Only covariance between samples $\mathbf{g}_k \sim \mathbf{MVN}\left(\mathbf{0}, \sigma^2 \mathbf{G}\right)$
- Estimate variance components $\widehat{\sigma}^2 = \mathbf{y}^T \mathbf{A}_k \mathbf{y}$

Crawford et al. (2017), PLOS Gen

- Covariance between samples and variance components $\mathbf{g}_k \sim \mathrm{MN}_{n \times d} \left(0, \mathbf{V}_G, \sigma^2 \mathbf{G} \right)$
- Estimate d choose 2 variance and covariance components $\hat{\sigma}_{12}^2 = \mathbf{y}_1^T \mathbf{A}_k \mathbf{y}_2$

Stamp et al. (2023), G3

mvMAPIT **Modelling cross-trait genetic correlations of interaction effects**

Stamp et al. (2023), G3

Empirical Power

Genetic correlations improve power of mvMAPIT

Correlation between epistatic effect sizes V₁₂

Real Data*

Genetic correlations reveal strong signal of epistasis

* Hematology traits of WTCCC Mice

i-LDSC regression

Non-additive effects in complex human traits

- Including epistasis improves heritability estimates in GWAS
- Epistasis is more pervasive in human traits than previously reported

New Results

Follow this preprint

Accounting for statistical non-additive interactions enables the recovery of missing heritability from GWAS summary statistics

🕩 Samuel Pattillo Smith, 🕩 Gregory Darnell, 🕩 Dana Udwin, 🕩 Arbel Harpak, 🕩 Sohini Ramachandran, Lorin Crawford

doi: https://doi.org/10.1101/2022.07.21.501001

Generative Model Polygenic trait architecture

- $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] + \mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = H^2$ is the broad-sense heritability
- $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = h^2 = \rho H^2$ is the narrow-sense heritability
- $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = (1 \rho)H^2$ makes up the remaining variation
- *ρ* measures the proportion of variance that is explained by additivity.

Smith, Darnell et al., *bioRxiv*

i-LDSC regression **Extending the LD Score Regression Framework**

LD Score Regression

Taking the expectation of GWA test lacksquarestatistics $\chi^2 = N \hat{\beta} \hat{\beta}^{T}$ yields:

$$\mathbb{E}[\hat{\boldsymbol{\beta}}\,\hat{\boldsymbol{\beta}}^{\mathsf{T}}] = \lambda \mathbf{R} + \left(\frac{\rho H^2}{J}\right) \mathbf{R}^2$$

A model to estimate heritability:

$$\mathbb{E}[\chi^2] \propto \mathbf{1} + \boldsymbol{\ell} \tau$$

LD Scores are given by:

$$\boldsymbol{\ell}_{j} = \sum_{k} r_{jk}^{2}$$

Bulik-Sullivan et al. (2015), Nature Gen

Interaction-LD Score

Taking the expectation of GWA test statistics $\chi^2 = N \hat{\beta} \hat{\beta}^{T}$ yields:

$$\mathbb{E}[\widehat{\boldsymbol{\beta}}\,\widehat{\boldsymbol{\beta}}^{\mathsf{T}}] = \lambda \mathbf{R} + \left(\frac{\rho H^2}{J}\right) \mathbf{R}^2 + \left(\frac{(1-\rho)H^2}{M}\right) \mathbf{R}^2$$

A model to estimate heritability:

$$\mathbb{E}[\chi^2] \propto \mathbf{1} + \boldsymbol{\ell}\tau + \boldsymbol{f}\sigma^2$$

LD and i-LD Scores are given by:

$$\ell_j = \sum_k r_{jk}^2, \qquad f_j = \sum_m v_{jm}^2$$

Smith, Darnell et al., *bioRxiv*

Nonlin

 \mathbf{V}^2

LDSC regression

Estimating narrow sense heritability from GWA summary statistics

• Regress on $\mathbb{E}[\chi^2] \propto 1 + \ell \tau$

Bulik-Sullivan et al. (2015), Nature Gen

i-LDSC regression

Epistatic LD score improves estimate of narrow sense heritability

- Include marginal epistatic LD score f
- Regress on $E(\chi^2) \sim 1 + \ell\tau + f\sigma$

Smith, Darnell et al., *bioRxiv*

i-LDSC regression **Evidence of non-additive effects in human traits**

Non-additive variation of complex traits

Variance component partitioning improves detection of epistasis.

- Marginal epistasis addresses search space and small effect problem
- Modeling genetic correlations reveals pleiotropic trait architecture and improves sensitivity
- interaction-LD score regression reveals non-additive variation in human traits

Nonlin.

Additive

Acknowledgements

Advisors

Lorin Crawford Dan Weinreich

Crawford Lab and Dave

Chibuikem Nwizu Dave Peede Ria Vinod Alex Wong Emily Winn Ashley Conard Dana Edwin Wai Shing Tang Whitney Sloneker Yu Zhong Collin Small Ryan Huang

mvMAPIT

- R package published on CRAN: https://cran.r-project.org/package=mvMAPIT

install.packages('mvMAPIT')

Code and documentation on GitHub: https://lcrawlab.github.io/mvMAPIT/

Stamp et al. (2023), G3

Relevant References

Variance Component Estimation

• X. Zhou. "A unified framework for variance component estimation with summary statistics in genome-wide

Marginal Epistasis Detection

- mapping studies of quantitative traits. PLOS Genetics, 13(7), e1006869. https://doi.org/10.1371/ journal.pgen.1006869
- https://doi.org/10.1093/g3journal/jkad118

Interaction-LD Score Regression:

Related Software/Source Code:

mvMAPIT: <u>https://lcrawlab.github.io/mvMAPIT/</u>

• L. Crawford, P. Zeng, S. Mukherjee, & X. Zhou, (2017). Detecting epistasis with the marginal epistasis test in genetic

• J. Stamp, A. DenAdel, D. Weinreich, & L. Crawford, (2023). Leveraging the Genetic Correlation between Traits Improves the Detection of Epistasis in Genome-wide Association Studies. G3 Genes|Genomes|Genetics, jkad118.

• G. Darnell*, S.P. Smith*, D. Udwin, S. Ramachandran, and L. Crawford. Partitioning tagged non-additive genetic effects in summary statistics provides evidence of pervasive epistasis in complex traits. bioRxiv. 2022.07.21.501001.